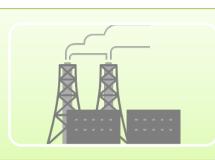

研究開発概要

2018年5月版


研究開発全体マップ

[製品] コントローラ等を対象にして、現状の確認・対策、およびセキュ アな製品開発についての研究開発

[システム] (IT)システムを中心とした現状のシステムの確認・対策、お よびセキュアなシステムを作るための研究開発

[プラント] 現状のプラントの確認・対策、およびセキュアなプラントを 作るための研究開発

[テストベッド] 製品・システム・プラントについて、模擬プラント等による確認・対策を実施できる環境そのものに関する研究開発

大項目

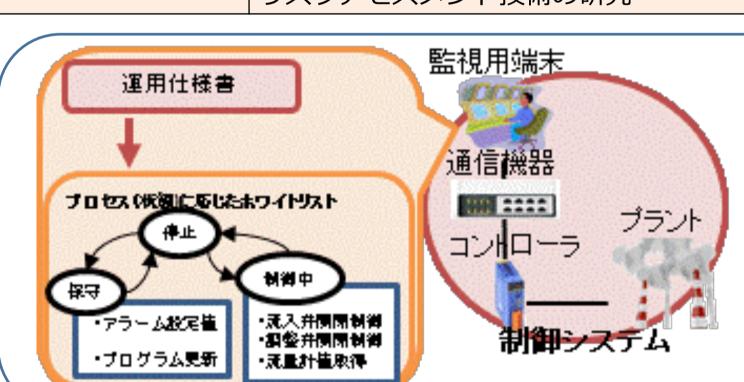
各分類の代表テ

大項目	小項目	期間
現状製品の評価・検	ISCI/EDSA準拠のための評価技術の研究	2012 -
証技術	CSSC独自の評価項目策定	2012 -
	EDSA認証のための実証実験と環境整備	2015 -
	CSSC独自の検証技術の研究	2012-
セキュアな製品に 向けた技術開発	ホワイトリストスイッチ	2012 -
	ホワイトリスト(端末・サーバ向け)	2012 -
	ホワイトリスト(コントローラ)	2016-

	現状システムの評 価・検証技術	ISCI/SSA準拠のための評価技術の研究	2012 -
		CSSC独自の評価項目策定	2012 -
		CSSC独自の検証技術の研究	2013-
	セキュアなシステムに向けた技術開発	セキュアな制御システム構築ガイド	2013 -
		ネットワークの構成要素から生成されるログを活 用した分析技術の研究開発	2015 -
		ビル分野におけるセキュリティ検証を目的とした ログ分析手法の研究	2015 -
		制御システム全体のホワイトリストの研究	2016 -
		スマートメーターシステム検証技術の研究	2015-
		リスクアセスメント技術の研究	2016-

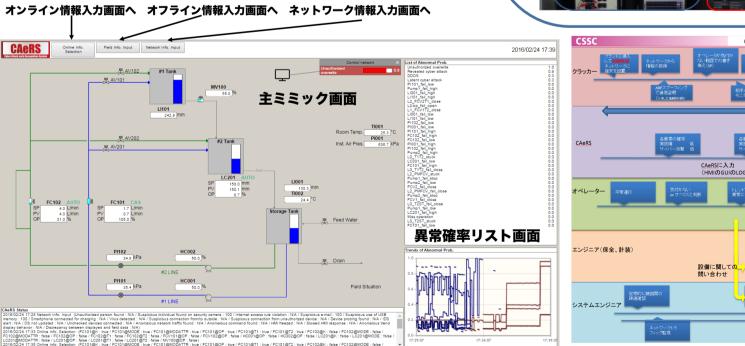
小項目

検証手順


- 1. 各プラントのネットワークスイッチをホワイ
- トリストスイッチと入れ替える 2. すべての通信を登録外としてSyslogサーバに 送信させ、ネットワーク内通信の挙動を確認
- する 3. ホワイトリストを自動生成する
- 4. 各プラントで攻撃を実施し、状態を確認する
- 5. ネットワーク内端末を入れ替える 6. ホワイトリストを部分更新し、通信に影響が
- ないことを確認する
- ※1.~4.→自動生成ホワイトリストの有効性検証 5.~6.→システム部分更新時のホワイトリスト 更新検証

検証結果

- 各検証プラントにおいて、自動生成したホワイト リストから攻撃パケットのみを検知・排除できる
- ホワイトリスト設定に要する時間を、手動と比較 して約1/3に短縮できることを確認


設定方法	85行の作成に要する時間	手動作成に対する効率			
自動	30分	2.8			
手動	85分	1			
制御システムの部分的な更新時にホワイト リストの一部更新が可能であることを確認					

プラント状態ごとに利 用される命令をホワイ トリストに定義し、ある 状態では利用される はずのない命令を攻 撃として検知・防御

期間

2015 -

インタ!	フェース・ニー・シナリオ	
大項目	小項目	期間
現状のプラント運転 の検証技術	ケイパビリティモデルに基づくシステムリスク管 理体制成熟度評価	2013
	CSMS演習コンテンツ	2013
セキュアなプラント に向けた技術開発	ヒューマンファクター対策	2012 - 2013
	サイバー攻撃早期認識技術の開発	2012 -
	FA模擬プラントへのセキュアログ収集基盤およ び縮退運転機構の実現	2013 -

1.7E C		#n a a
大項目	小項目	期間
テストベッドの構築	模擬プラントおよび模擬システムの構築	2012 - 2016
	OPCによる相互接続環境の構築	2013
	マルウェアの動作を検証する機能の構築	2012 -
	対策製品の評価	2012 -
	可搬型模擬プラントの構築	2015-
テストベッドへの検	遠隔検証環境の構築	2012 -
証環境の構築	疑似攻撃環境の構築	2013 -

技術研究組合制御システムセキュリティセンター

Email: cssc-sec@css-center.or.jp URL: http://www.css-center.or.jp

サイバー演習シナリオ

CSSCでは組合員・特別賛助会員・賛助会員を 募集しております。 詳細はホームページをご覧ください。